

UNILEVER INDIA EXPORT LIMITED, KANDLA

Team:

- Vineet Tiwari- Factory Engineer
- Sakshi Paswan-Process Engineer

UIEL KANDLA SITE DEMOGRAPHICS

Site Facts

- Operation: 6-Day X 3-shifts
- Plot area: 20 acres, (27% built up area)
- Asset Base: GBV: 1209.3

million INR; NBV: 870.0

million INR

Category, Formats

- BPC (Skin)
 - Jars: Cream, 2 lines
 - Bottles: Lotions, BW, HW, (3 lines
 - Gallon pack: 2L to 5L Line
- BPC (Hair)
 - · Bottles: Shampoo, Cond
 - · Gallon: Shampoo, Cond

Logistics

- FG SKUs: 300 +
- Suppliers: 100+
- Raw Materials: 250+
- Packaging Materials: 750+
- Vehicles per day: ~33
 - FG: 17+
 - RPM/SFG: 16+

People

- Workforce
 - 27 WC(white collar) (8.44%)
 - 289 BCE(Blue collar employee) (90.31%)
 - 4 OAS(office administrative staff) (1.25%)
- Gender Ratio: 7.5% (Inc. CL+ App)
- Avg. Age: 48 Years

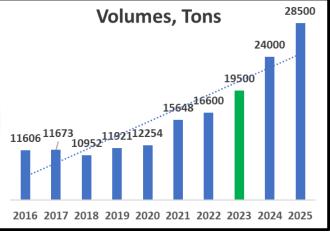
Site Product Portfolio

•FG product :SKU'S : > 250

•SIZE: 30 ml To 5 LTR

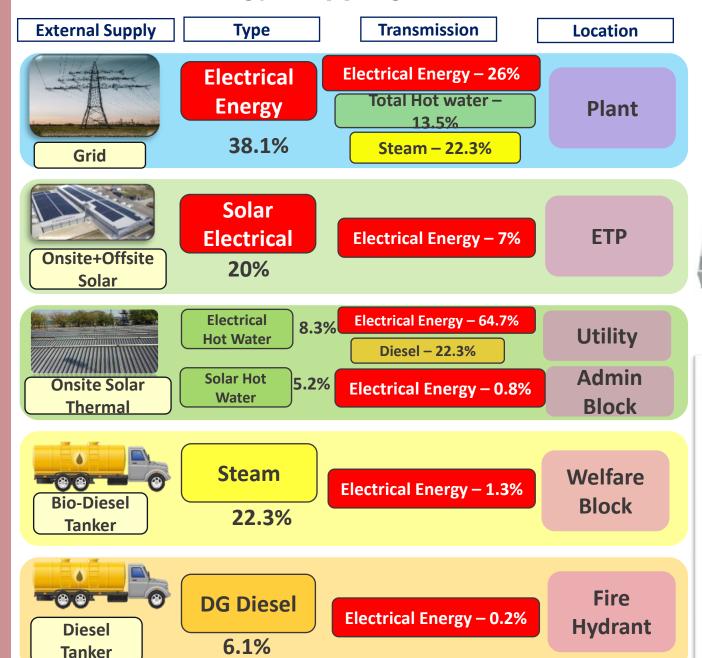
•COUNTRIES: > 80

Our Wide Portfolio



Creams

Conditioner


Oils

Dedicated site for UI with 100% contribution from 2022

KANDLA Energy Mix Flow Diagram HT Room Grid Power Transformer LT panel **Plant** 630A 11KV PGVCL 1500kva 3200A Source-1 THE PERSON NAMED IN 86% ¥ 🖭 ## 200000 -**DG - 1010KVA TOTAL ENERGY (GJ)** Source-2 5788.2, 30% A.C (11KV) Solar-160kwp 13564.1, 70% Source-3 DC 8% **Breaker -1** Renewable ■ Non Renewable **Inventor** ---**DG - 02 No's UPS - 03 No's** HT - 01 No's **Transformer** LT - 15 No's 1010kva & 500kva 15kva& 20kva 11kv 11kv 415v 50Hz Each

KANDLA Energy Mapping

S Steam

A Compressed
Air

C Chilled Water

Electrical Energy

Diesel

MANUFACTURING PROCESS FLOW

RM/PM entry + Weighment

RM/PM Storage

Sampling By sampler for QA

Transportation of RM/PM from stores to Shopfloor

Weighing materials as per batch sheet

Materials move to MFG

Manufacturing + Packing

Addition of RM's as per batch sheets in sidepots

Batching in mixer as per **Batch sheet**

Transfer of product into **Holding Tank**

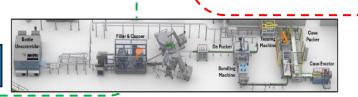
Pumping to hopper of Bottle line

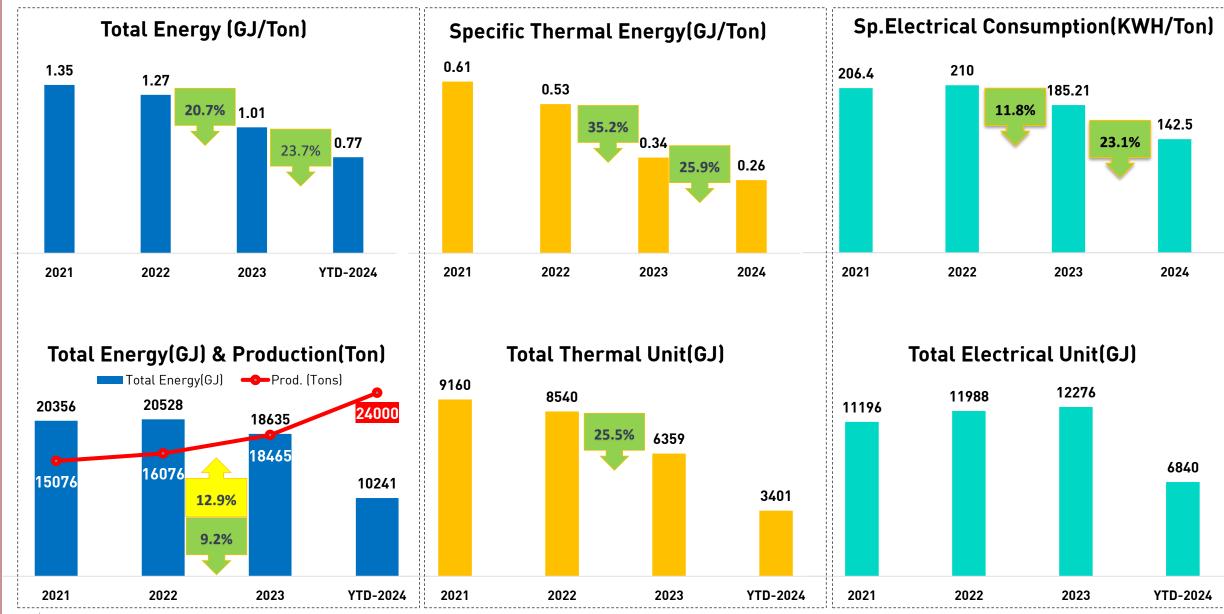
Packing Process

Palletization + Dispatch

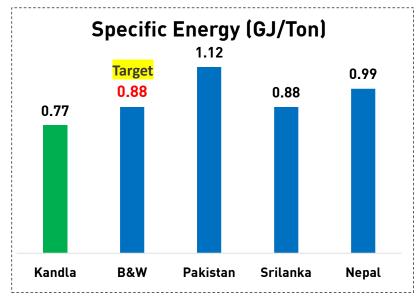
Arrangement of CLDs on pallets

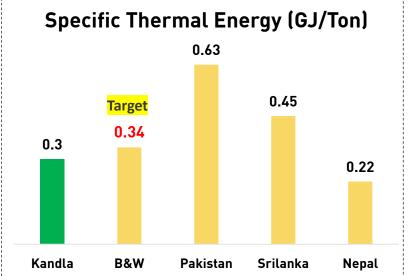
QC Check

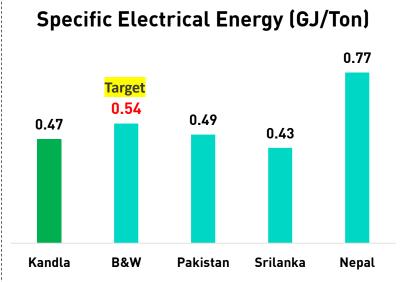

Storage at FG warehouse



Loading into Vehicle & **Dispatch of Material**




ENERGY WITH SPECIFIC CONSUMPTION & PRODUCTION-LAST 3 YEARS



ENERGY BENCHMARKING-B&W India & Other SA Sites

SUMMARY OF THE PROJECTS

YEAR	No of Energy saving projects	Investment (INR Million)	Electrical savings (Million kWh)	Thermal Savings (Million Kcal)	Total Savings (INR Million)	Payback period (in months)
FY 2021-22	5	.225	.2	86.7	3.02	7
FY 2022-23	4	.22	.45	102.8	3.19	10.2
FY 2023-24	6	27.45	1.03	1530	14.8	28

KANDLA ENERGY ROADMAP

LED FACTORY **LIGHTING**

BIO-DIESEL IN

BOILER & HWG

EMS

- Control tower
- Dark cascade

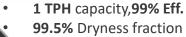
SMART UTILITIES

DIGITALISATION

TURBOCOR MAGLEV CHILLER

Oil free, magnetic bearing compressor

300 TR Kw cap., 8.5 COP



EC+ AXIAL FAN

RETROFIT

1.35 Lakh units

saving/Annum

SOLAR WATER HEATER PLANT

20 KI Per day capacity 150 Kw capacity

BSW

100 KI Per day capacity

AIR SOURCE HEAT

PUMP

350 Kw capacity, 2.5 COP

CHILLER

ATCS IN

IE5 MOTOR SMART PUMPS

165 Kw onsite plant

OFFSITE/ONSITE

SOLAR PV PLANT

12.85 Mw offsite Brookfield project

MAJOR ENCON PROJECT PLANNED IN FY-2024-25

ENERGY + SUSATAINABILITY

- Brookfield offsite inter state Solar Project 12.85
 MW with peak 4 hours
- Proposed savings for Kandla-11.3 lakhs
 Unit/Annum Total savings
 3.5 Million INR
- Introduction of Wind PPA with total savings of- 5.5 Million INR

EFFICIENCY IMPROVEMENT

- EEM-2.0, IE4,5 motors in Mfg- 1.2 Million INR
- E-FRP fan in cooling tower-.25 Million INR
- EMS-2.0- with real time data and alarming for over energy consumption

TECHNOLOGY INTERVENTIONS

- 1 TPH Electric boiler instead of diesel fired - 775 Ton CO2/Year, 8.8 Million INR
- Solar water heater expansion – 5.04 Million INR
- Hydromix-Nano technology fluid in Heat pump condenser circuit- .9 Million INR

INNOVATIVE AND WASTE REDUCTION

- Using cold water in shampoo instead of hot water-BCT reduction + Power saving- 2.02 Million INR
- Heat recovery from Dry Vacuum pumps- .8 Million INR
- Centralized vacuum pump for packing and mfg. by removing individual pumps 6 Million INR

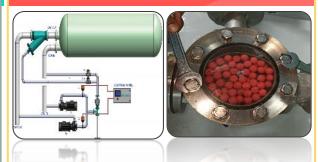
ENERGY SAVING PROJECTS IMPLEMENTED IN LAST 3 YEARS-2023-24

RETROFITTING EC+ FAN IN AHUs

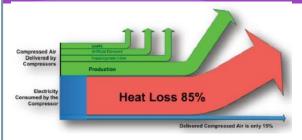
Efficiency Gains over Centrifugal & Plug Fans:

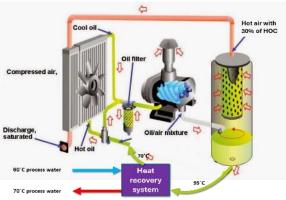
- 15-35% efficiency gain in the fan
- 5-10% gain by eliminating belt losses.
- 2-4% gain by switching from IE2 to IE4 / IE5 motors
- ~20-45% overall efficiency gain

Saving-452 GJ/1.11 Million INR


Replicable in all AHUs, already replicated at 12 sites in HUL

IE5 MOTOR SMART PUMP


- Inbuilt VFD controlled
- Can monitored and controlled the required parameters like temp and pressure diff.
- Installed at cooling tower, hot well and cold well
- Saving-1206 GJ/3.01 Million INR
- Easily replicable


ATCS IN CHILLER

- Used for cleaning condenser tube in auto mode
- COP IMPROVEMENT BY 0.5
- Saving-216 GJ/.43 Million INR
- Easily replicable at all chillers anywhere with low cost

HRS IN COMPRESSOR

- Saving-266 GJ/.66 Million INR
- Can be done in any compressor

ENERGY SAVING PROJECTS IMPLEMENTED IN LAST 3 YEARS-2022-23

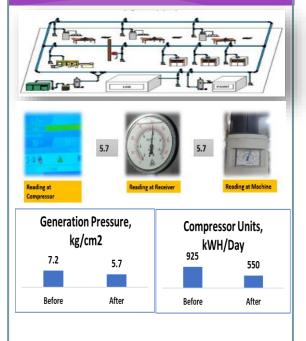
VFD BASED HE AIR COMPRESSOR

Comnpressed	Air cons	@100KW	motorf	or 1h
-------------	----------	--------	--------	-------

Capacity	500	CFM
Requirement	250	CFM/hr
time	2	hrs
Motor capacity	55	KW
	Before	After
Loading Time	1	2
Unloading Time	1	0
Energy cons during loading		
(KWH)	55	27
Energy cons during Unloading		
(KWH)	18	0
Total	73	27

- Saving-324 GJ/.08 Million INR
- VFD can be installed at old compressor

HVLS FANS IN PACKING HALL

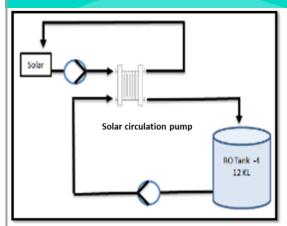

- Old wall mounted 35 industrial fans replaced by 1 high volume low speed(HVLS) fan
- Saving-648 GJ/1.6 Million INR
- Easily replicable to anywhere

VFD based HE CT WITH FRP FAN

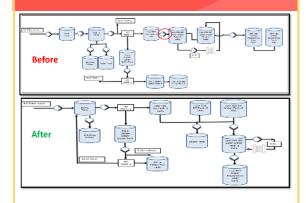
- High efficient fan with VFD controlled interlocking with WBT
- Saving-432 GJ/1.08 Million INR
- FRP fans can be easily retrofit to any cooling tower

RING MAIN HEADER IN PACKING HALL

- Saving-216 GJ/.43 Million INR
- Easily replicable to anywhere


ENERGY SAVING PROJECTS IMPLEMENTED IN LAST 3 YEARS-2021-22

EC BLOWERS IN ETP


- Using high efficient EC blowers in ETP for aeration tank by replacing old conventional blower
- Saving-216 GJ/.54 Million INR
- Easily replicable to anywhere

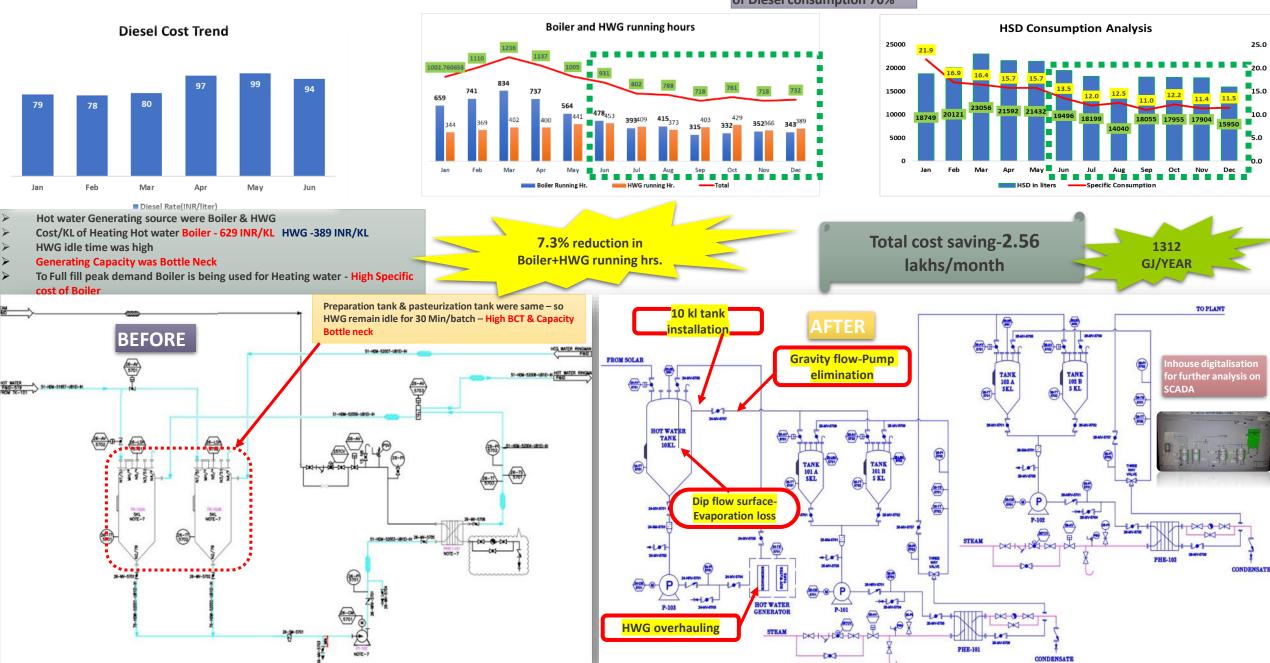
SOLAR THERMAL OPTIMIZATION

- Automation of pump on and off to optimize running hours of solar heater pump
- Saving-270 GJ/.67 Million INR
- Replicable as per design of the system

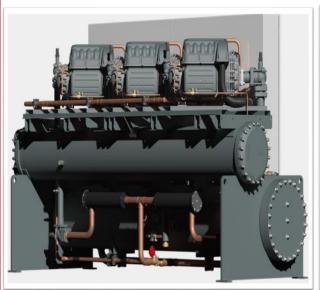
ECRS IN RO PLANT

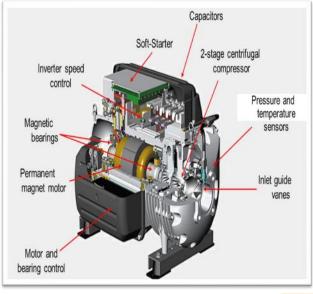
- Elimination of one pump by combination of tanks and making common header and using gravity for flow
- Saving-216 GJ/.54 Million INR
- Replicable as per design of the system

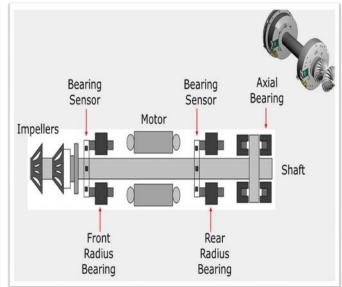
CONVEYORS INTEGRATION

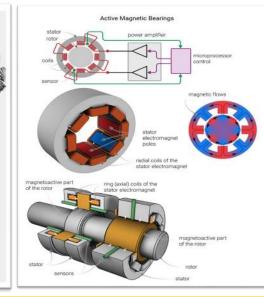


- Integration of all the conveyors with respective machine/equipment to eliminate idle running when machine is not running
- Saving-108 GJ/.27 Million INR
- Easily replicable to anywhere

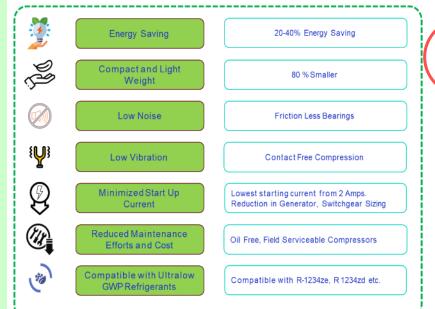


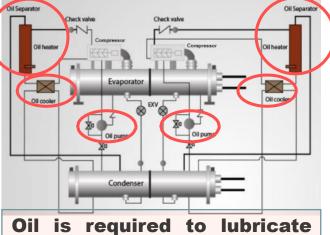

HSD saving project by HWG optimization-2022-23


Hot water is the major source of Diesel consumption 70%

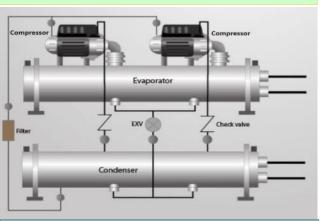


INNOVATIVE PROJECT-1 - Magnetic Bearing Compressor Chiller (1st in HUL)





A magnetic-bearing centrifugal chiller utilizes magnetic levitation technology to achieve a frictionless and non-contact levitation state.



Complex Design with Oil Handling Components

Oil is required to lubricate bearings which are used to support rotational and linear movement of the rotor

Simple Design without Oil Handling Components

Oil is not required since the motor shaft levitates in a magnetic field or uses refrigerant for lubrication

INNOVATIVE PROJECT-1 - Magnetic Bearing Compressor Chiller (1st in HUL)

Oiled Screw Compressor

Mechanical Wear typical maintenance needed in 5 years

20% Capacity loss over 10 years

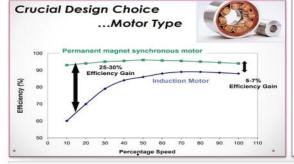
Oil needed for bearing lubrication

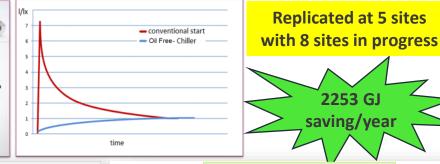
Risk of refrigerant leakage is comparatively high

Annual replacement of oil and oil filter – 2L/annum.
Lifetime maintenance cost –
35 L

Oil Free, Magnetic Bearing Centrifugal Compressor

No mechanical wear over entire life


No capacity or efficiency degradation over life


Oil free magnetic bearing.


No lubrication needed.

Minimal refrigerant leakage risk

Zero maintenance cost for compressor

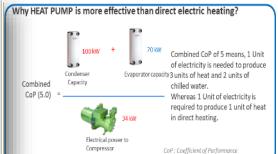
Parameter	Turbocor Maglev Chiller		g Oil Screw hiller
Capacity, TR	300	330	Typical COP
IPLV (KW/TR)	0.4538	0.60	4 to 6.1
IPLV (COP)	7.5-9	5.9	
Refrigerant	R1234ze	R134A	
Sustainability	20 times lower GWP; ODP-0	GWP*-130	00 ; ODP-0
Annual KWh Consumption	2,70,000	6,60,000	
Savings	56.3 Lakl	hs/Annui	m

INNOVATIVE PROJECT-2 - Air Source Heat Pump (1st in HUL)

Process Description: Pasteurized hot water > 80deg is required for CLS batch & CIP process.
The hot water is generated by using HSD fired HWG. With avg hot water Req – 100 KI/day

Major Challenges:

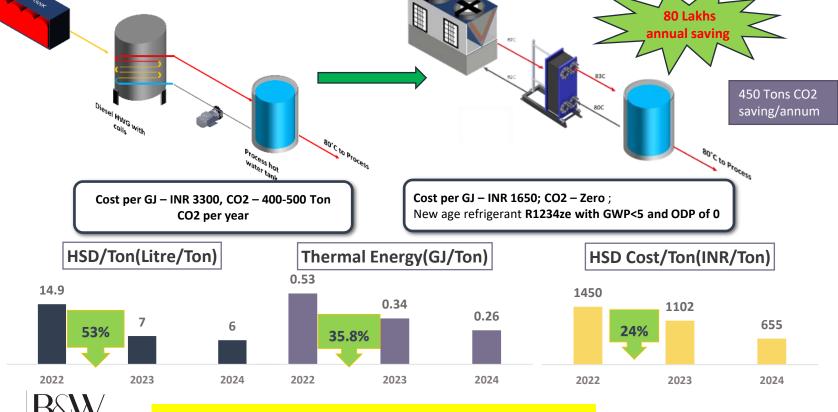
Avg Diesel Consumption -536 lit/day Annualized diesel cons – 160.8 Kl GJ impact by HSD - 6401 GJ Annual CO2 impact – 480 Tons

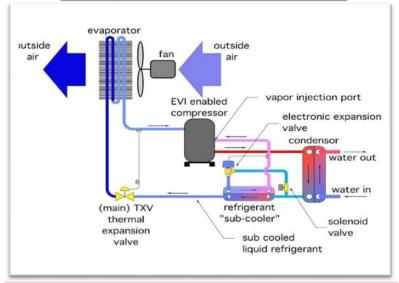

Typical Unilever Applications			
Applications	Temperatur e Range		
CIP System	< 80 - 85 °C		
Process Water	< 80 - 85 °C		
Domestic Hot Water	< 40 - 45 CC		
Boiler Feed Water Preheat	Up to 95 ℃		
Steam Systems	150 °C to 200 °C		

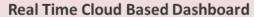
Ultra-High Temperature Lift

- Temperature raised from 15C ambient on evaporator to 86C hot water on condenser side
- 310 kW heat pump capacity
- Twin screw compressor model used for high lift

Elimination of diesel

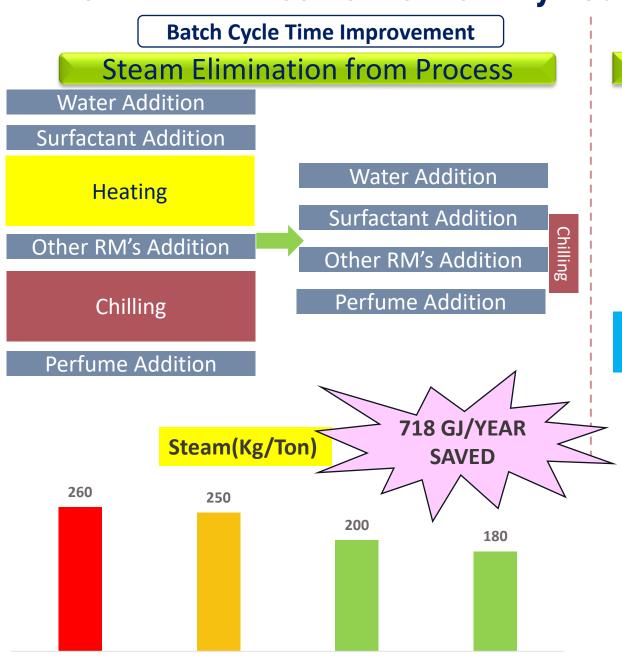

- Since operation of heat pump, diesel consumption in HWG is completely eliminated
- All ancillary costs like blower, maintenance, spares, fuel pumps etc shut down.




Diesel fired Hot Water Generator

Air Source Heat Pump

Basic Principle of ASHP



17

INNOVATIVE PROJECT-3 - Utility reduction in Process-2023-24

2023

2024-YTD

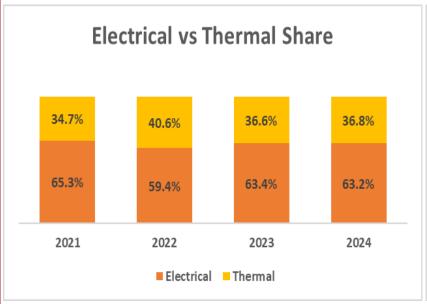
2021

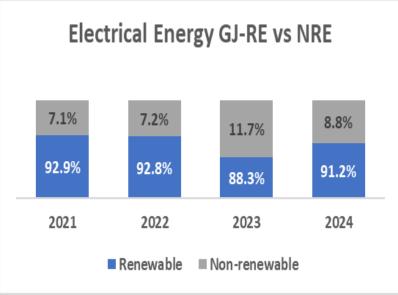
2022

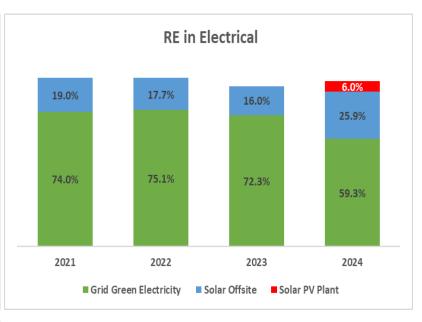
One Touch CIP

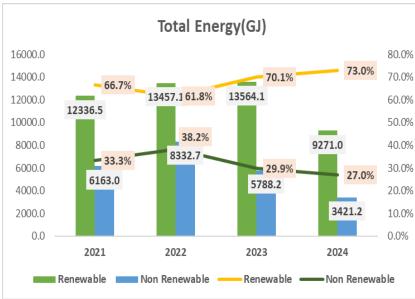
Customised one touch SCADA system for CIP

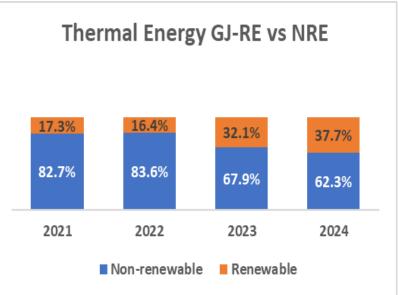
Standardization of process Time

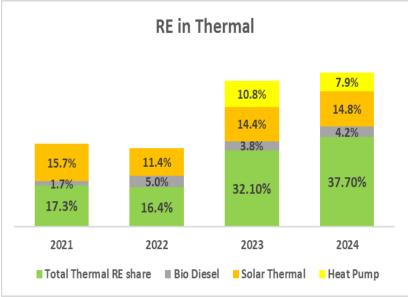

Elimination of Manual Dependency

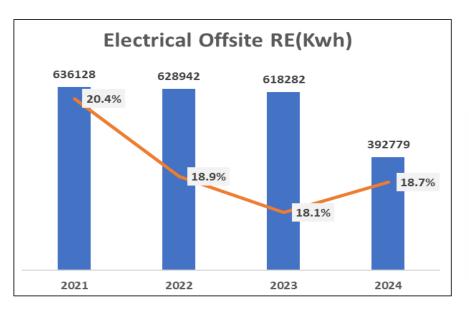

Reduction in time and Hot Water Usage:
Steam & Power usage Reduction

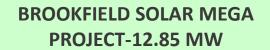

CIP TIME REDUCED FROM 2
HRS TO 1 HR PER CIP

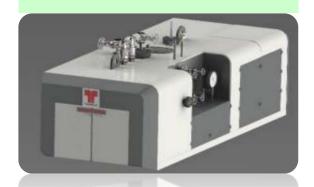

1728 GJ/YEAR SAVED

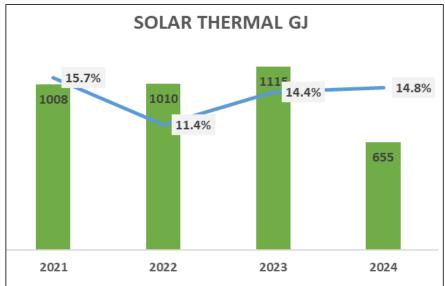

UTILISATION OF RENEWABLE ENERGY SOURCES





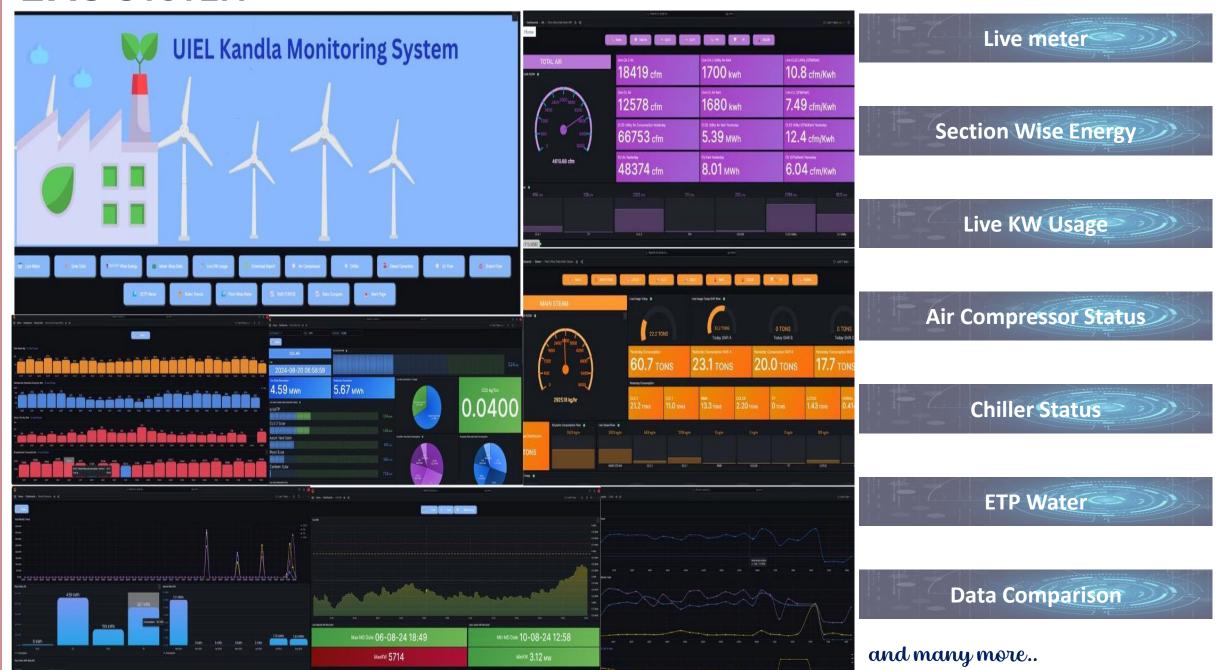



UTILISATION OF RENEWABLE ENERGY SOURCES & FUTURE PLAN



1 TPH ELECTRIC BOILER IN PLACE OF HSD FIRED BOILER

SOLAR WATER HEATER EXPANSION UPTO 2016 GJ



1-OFFSITE WINDMILL- 1MW

EMS SYSTEM

21

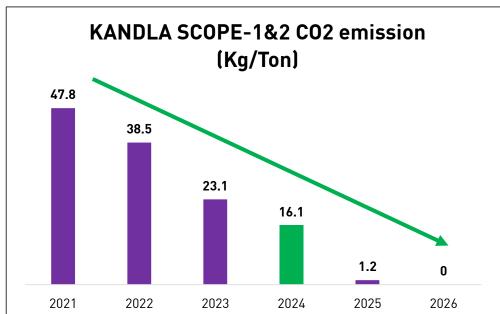
UNILEVER GHG TARGET & ACTION PLAN

Our Climate Targets

Unilever has three principal targets that guide our actions:*

- a Short-term Emissions Reduction Target: to reduce in absolute terms our operational (Scope 1 & 2) emissions by 70% by 2025 against a 2015 baseline;
- a Medium-term Emissions Reduction Target: to reduce in absolute terms our operational emissions (Scope 1 & 2) by 100% by 2030 against a 2015 baseline; and
- a Long-term Net Zero Value Chain Target: to achieve net zero emissions covering Scope 1, 2 and 3 emissions by 2039.

Halve the footprint of our products by 2030 against a 2010 baseline


Transition to 100% renewable heat by 2030

GHG INVENTORISATION & ACTION PLAN

STEP 1.1: ASSESS WHICH OF THE 3 MAIN CONTRACTUAL OPTIONS TO **DELIVER 100% RENEWABLE ELECTRICITY**

GREEN POLICY

RENEWABLE ELECTRICITY **CERTIFICATES***

Supply contract Contract strcuture Contract terms Covers % of consumption Implementation complexity Savings vs. On cost

Multi-customers regional/ national/site 1+ yrs up to 100% low **

On cost

* These have different names in different markets

single customer site supply 10-15 yrs ~ 10-30% high Savings

Multi-customers national or site supply 3-10 yrs up to 100% medium Savings

Bundled REC / OFF

SITE PPA/ Green Tariff

Option 3

** low if REC concept & system implmented in country

eurpose-Lea		Options	Renewable Market & Legislation		
(Column 1)			CLOSED (Not supportive)	REFORMING [Partially supportive]	OPEN (Pro renewables
	1	RECs	Υ	Υ	Y
	2	On/near site solar (Power Purchase Agreement –PPA- or Capex)	Y	Y	Y
	3	Contract renewable electricity (e.g. green tariff or short-term PPA)		Y	Υ
	,	Long torm ranguable electricity DDA			

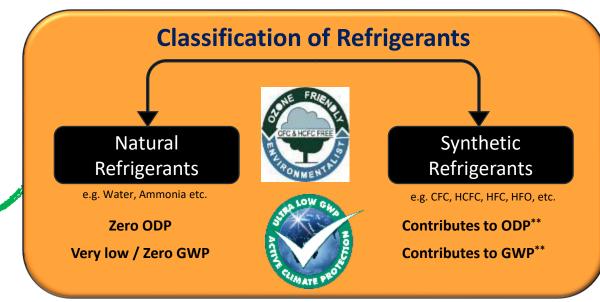
5 CAPEX (to leverage corporate tax credit or

INITIATIVES TAKEN AND FUTURE PLAN

- Usage of food waste for producing Bio-Gas to reduce no. of LPG cylinders in canteen for cooking
- Replacement of old refrigerant to natural one
- Retrofit emission control device in DG to reduce the PM
- Bio-diesel in DG set

- Electric boiler to eliminate HSD usage and zero flue gases in chimney
- Localisation of raw material supplier to reduce trucks Kms and reduction in GHG emissions by 60% in transportation
- Usage of EV vehicle for factory staff

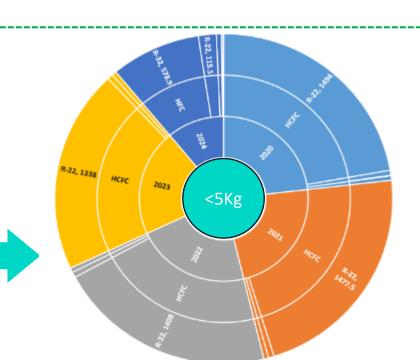
Particulate Matter reduction


Compliance to NGT order dated 06.08.2019 in the matter of "Report filed in O.A. No. 681/2018. This is with the objective for PM reduction by using retrofitted emission control devices (RECD) for in-use diesel operated internal combustion engines up to 800 kW gross mechanical power for generator set (Genset) application.

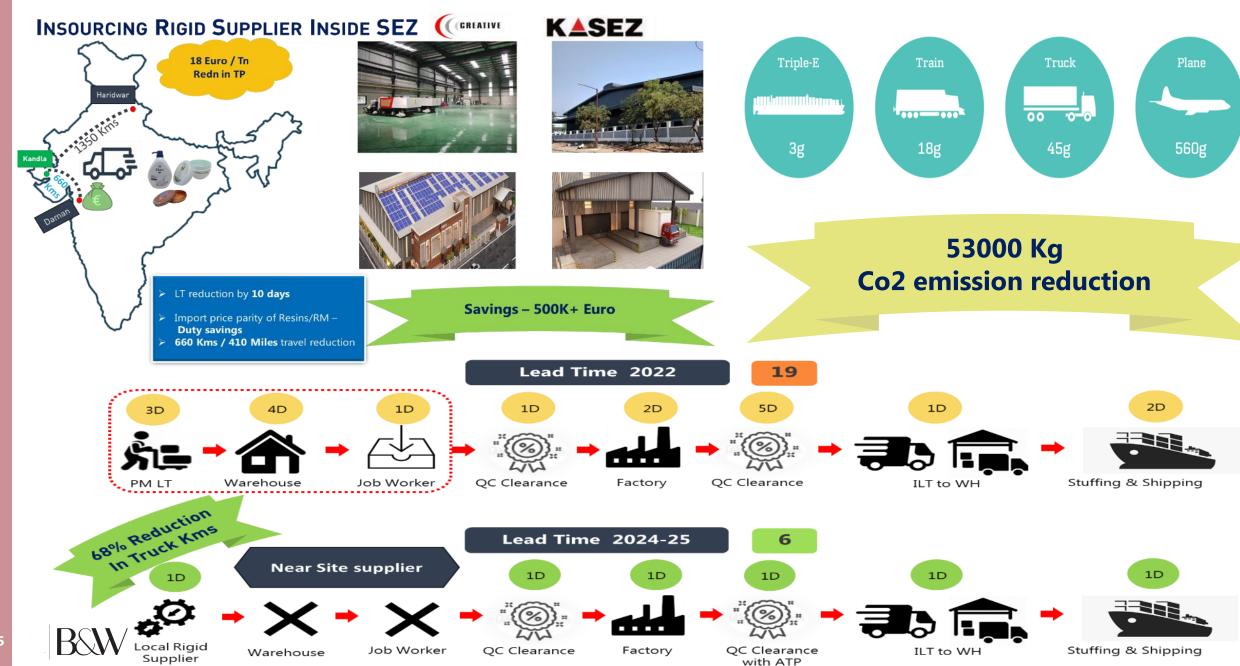
Eco Friendly/ Green Refrigerants inventorisation

Unilever objective:

Phase out of high GWP refrigerants to achieve our carbon neutral commitment.


<u>Unilever Policy Towards use of Eco-Friendly</u> Refrigerants:

- 1. Use of natural refrigerants wherever possible
- 2. No refrigerants with ODP > 0
- **3. For Existing Installations:** No refrigerants with GWP > 1500 by December 2021.
- For New installations: No new CFCs or HCFCs in installations + Use of new ultralow GWP refrigerants with GWP < 150



Refrigerant Contained in Large Systems (> 5Kg) on Site (Kg)

Refrigerant Contained in Large Systems (< 5Kg) on Site (Kg)

GREEN SUPPLY CHAIN MANAGEMENT

KANDLA NET ZERO COMMITMENT

NR Energy
<2 % of
Total
Energy

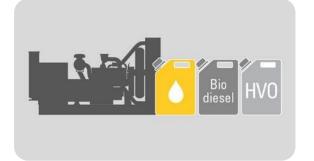
Total NR

Energy <

1000 GJ

After implementation of Electric **Boiler**, only **DG** will contribute which is < 1.5%

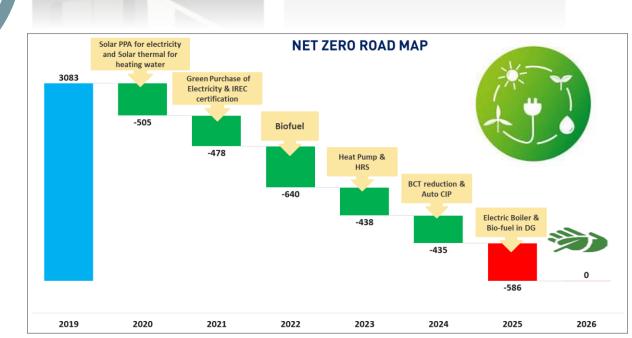
VOLUNTARY INITIATIVE-EP 100


- Usage of Heat Pump across 8 sites
- Magnetic bearing compressor chiller across 5 sites

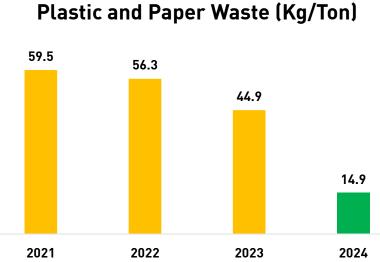
DG HSD
Contribution will be
< 350 GJ

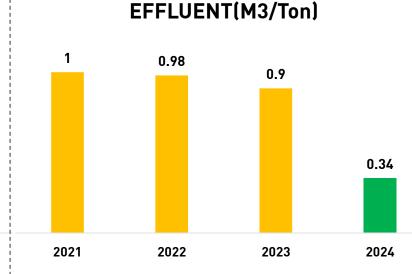
Refrigerant
Top up eq.CO2
< 50 Tons

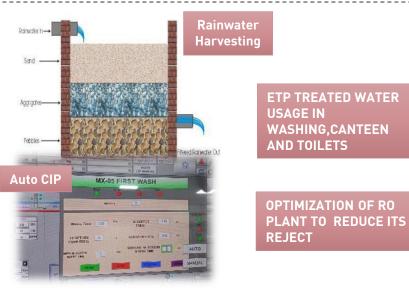
Refrigerant top ups eq. CO2 < 1 Ton


BIO-FUEL IN DG

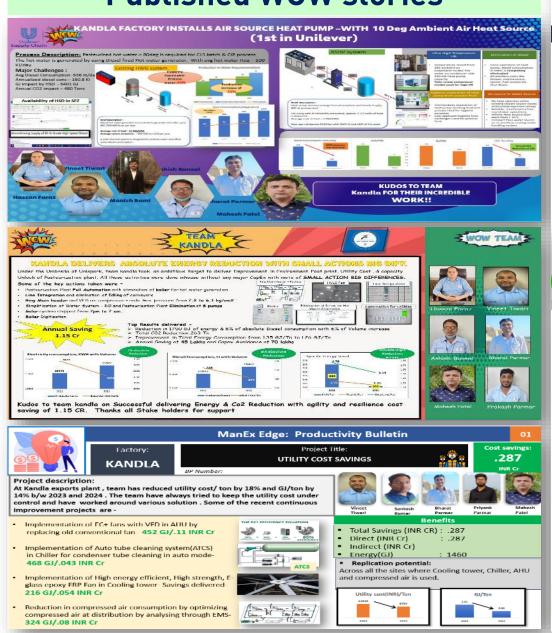
FUTURE INITIATIVE & PLAN-RE 100


Usage of DM cold water in place of pasteurize hot water for making Shampoo for export-Applied for approval-**1800 Ton** steam saving/Annum





CARE FOR PLANET-WATER AND WASTE



REWARDS AND RECOGNITION

Published WOW stories

Kandla – AMONGST TOP SITES – SA Factory League YTD June

Comprising of Holistic manufacturing performance metrics converted into one comparative table

Agile Site With Evolving Portfolio

- GOLD Award in Environment MGT By Grow-
- Green Tech Gold award in exports

2022

- Winner-SMED 2.0
- · Best Digital Kaizen **BGKC '23**
- GOLD AWARD-FICCI
- Apex Award- IMEXI

23K

Manufacturing of Hair

OIL, Sunsilk Hair

Cream, VPJ

1988

2 new automated lines installed for the 2021 first time, capacity to

SA SC AWARD for BEST FACTORY **Project Phoenix**

> Oral Portfolio Discontinued 2018

3 plants consolidated into

FICCI Quality

Excellence Gold

Voluntary

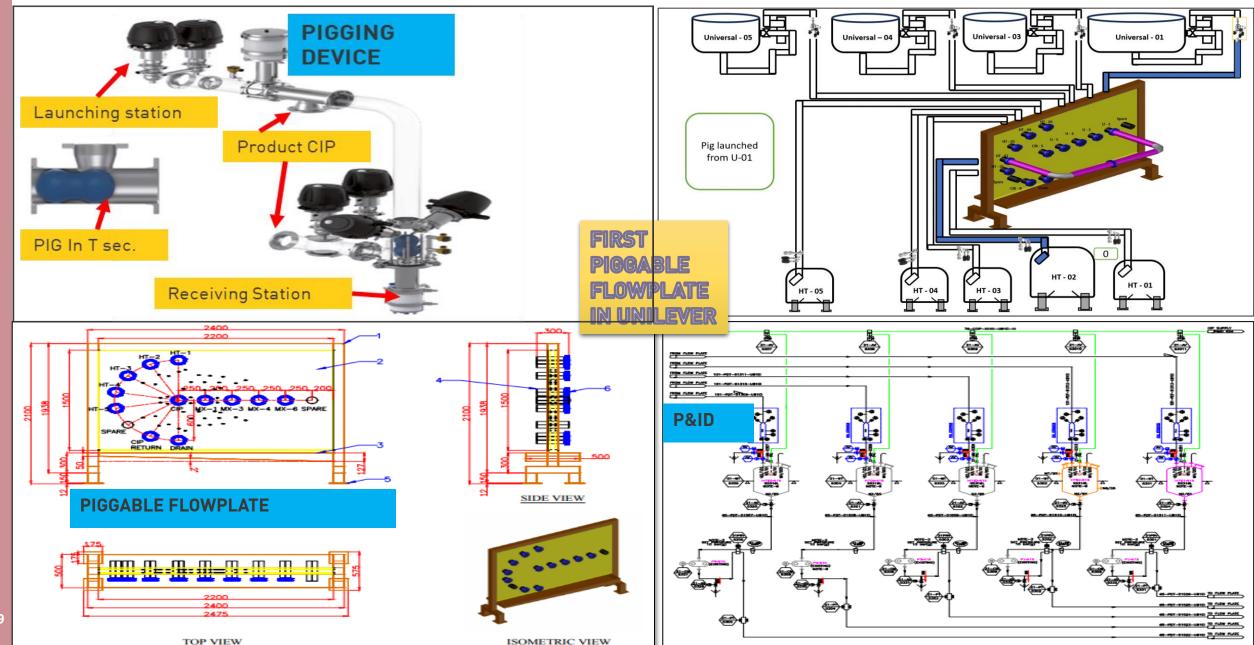
Factory Started with production of Oral and 1983 FAL portfolio

Transformed to making lipsticks,

perfumes, eye liners and Dalda

for Malaysia 2002

Liquid detergents

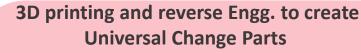

Earthquake hit the region and rice unit stopped

2001

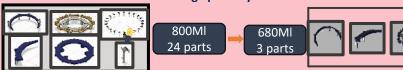
4---4---

retirement of 180 FTCs and remaining 300 made permanent

PIGGING THROUGH CUSTOMIZE PIGGABLE FLOW PLATE

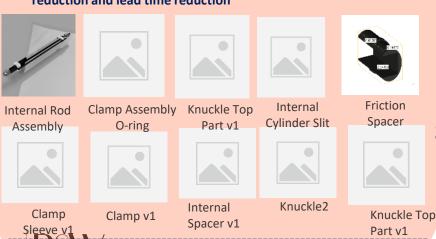


3D Modelling Printing in Manufacturing Space: Industry 4.0 4 4.0


CHANGE

Universal Jaw Claw Design Standardization for all 90% pumps.

Harmonization of Common change parts by 60%.


· Height adjustable Jaw design for all pumps/caps.

Savings: 33K Euro per innovation

Spare Part Redesign

 Critical part Redesigning using 3D modelling resulting Spare part cost reduction and lead time reduction

Innovation SMED Big Data 3D Printing Additive Manufacturing

Cybersecurity

Spare Part Redesign

Multiformat Flexibility

Max common change parts can be used from matched existing SKU)

Faster Innovation in Bottle Line

Savings: 80 K Euro, 50% LTFN Reduction

Providing MFF to all bottle lines to run all SKU's

After Multi-Format Flexibility* 48% Serac Cosmo

- **Multiformat flexibility** through puck standardization by 3D modeling and RE.
- Elimination of skill dependency on line specific operator..

3D Parts developed on Line for Pucks

STEP 1 - Close match of innovation SKU with existing

Before

*Multiformat Flexibility is measured as a ratio of packs which can be produced and total formats that exists

Savings: Depn. cost avoidance 50K Euro

Savings:21K Euro

Contact details:

- VINEET TIWARI
- vineet.tiwari@unilever.com
- 9957179390

- SAKSHI PASWAN
- sakshi.paswan@unilever.com
- 6388430696

THANK

